NR 440.215(9)(b)5.
5. An owner or operator may request that compliance be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(b)6.
6. The owner or operator of an affected facility shall conduct an initial compliance test for particulate matter and opacity as required under
s. NR 440.08.
NR 440.215(9)(b)7.
7. Method 9 shall be used for determining compliance with the opacity limit.
NR 440.215(9)(b)8.
8. The owner or operator of an affected facility shall install, calibrate, maintain and operate a continuous opacity monitoring system (COMS) and record the output of the system on a 6-minute average basis.
NR 440.215(9)(b)9.
9. Following the date the initial compliance test for particulate matter is completed or is required to be completed under
s. NR 440.08 for an affected facility located within a large MWC plant, the owner or operator shall conduct a performance test for particulate matter on an annual basis (no more than 12 calendar months following the previous compliance test).
NR 440.215(9)(d)
(d) The procedures and test methods in this paragraph shall be used to determine compliance with the limits for dioxin/furan emissions under
sub. (4). The cited procedures and test methods are contained in Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(d)1.
1. Method 23 shall be used for determining compliance with the dioxin/furan emission limits. The minimum sample time shall be 4 hours per test run.
NR 440.215(9)(d)2.
2. The owner or operator of an affected facility shall conduct an initial compliance test for dioxin/furan emissions as required under
s. NR 440.08.
NR 440.215(9)(d)3.
3. Following the date of the initial compliance test or the date on which the initial compliance test is required to be completed under
s. NR 440.08, the owner or operator of an affected facility located within a large MWC plant shall conduct a performance test for dioxin/furan emissions on an annual basis (no more than 12 calendar months following the previous compliance test).
NR 440.215(9)(d)5.
5. An owner or operator may request that compliance with the dioxin/furan emissions limit be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(e)
(e) The procedures and test methods in this paragraph shall be used for determining compliance with the sulfur dioxide limit under
sub. (5). The cited procedures and test methods are contained in Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(e)1.
1. Method 19, section 5.4, shall be used to determine the daily geometric average percent reduction in the potential sulfur dioxide emission rate.
NR 440.215(9)(e)2.
2. Method 19, section 4.3, shall be used to determine the daily geometric average sulfur dioxide emission rate.
NR 440.215(9)(e)3.
3. An owner or operator may request that compliance with the sulfur dioxide emissions limit be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(e)4.
4. The owner or operator of an affected facility shall conduct an initial compliance test for sulfur dioxide as required under
s. NR 440.08. Compliance with the sulfur dioxide emission limit and percent reduction is determined by using a CEMS to measure sulfur dioxide and calculating a 24-hour daily geometric mean emission rate and daily geometric mean percent reduction using Method 19 sections 4.3 and 5.4, as applicable, except as provided under
subd. 5.
NR 440.215(9)(e)5.
5. For batch MWCs or MWC units that do not operate continuously, compliance shall be determined using a daily geometric mean of all hourly average values for the hours during the day that the affected facility is combusting MSW.
NR 440.215(9)(e)6.
6. The owner or operator of an affected facility shall install, calibrate, maintain and operate a CEMS for measuring sulfur dioxide emissions discharged to the atmosphere and record the output of the system.
NR 440.215(9)(e)7.
7. Following the date of the initial compliance test or the date on which the initial compliance test is required to be completed under
s. NR 440.08, compliance with the sulfur dioxide emission limit or percent reduction shall be determined based on the geometric mean of the hourly arithmetic average emission rates during each 24-hour daily period measured between 12:00 midnight and the following midnight using: CEMS inlet and outlet data, if compliance is based on a percent reduction; or CEMS outlet data only if compliance is based on an emission limit.
NR 440.215(9)(e)8.
8. At a minimum, valid CEMS data shall be obtained for 75% of the hours per day for 75% of the days per month the affected facility is operated and combusting MSW.
NR 440.215(9)(e)9.
9. The 1-hour arithmetic averages required under
subd. 7. shall be expressed in parts per million dry basis and used to calculate the 24-hour daily geometric mean emission rates. The 1-hour arithmetic averages shall be calculated using the data points required under
s. NR 440.13 (5) (b). At least 2 data points shall be used to calculate each 1-hour arithmetic average.
NR 440.215(9)(e)10.
10. All valid CEMS data shall be used in calculating emission rates and percent reductions even if the minimum CEMS data requirements of
subd. 8. are not met.
NR 440.215(9)(e)13.
13. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 of Appendix F of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(e)14.
14. The span value of the CEMS at the inlet to the sulfur dioxide control device is 125% of the maximum estimated hourly potential sulfur dioxide emissions of the MWC unit and the span value of the CEMS at the outlet of the sulfur dioxide control device is 50% of the maximum estimated hourly potential sulfur dioxide emissions of the MWC unit.
NR 440.215(9)(e)15.
15. When sulfur dioxide emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the department or Method 19 to provide, as necessary, valid emission data for a minimum of 75% of the hours per day for 75% of the days per month the unit is operated and combusting MSW.
NR 440.215(9)(e)16.
16. Not operating a sorbent injection system for the sole purpose of testing in order to demonstrate compliance with the percent reduction standards for MWC acid gases is not considered a physical change in the method of operation under
ch. NR 405,
406 or
408.
NR 440.215(9)(f)
(f) The procedures and test methods in this paragraph shall be used for determining compliance with the hydrogen chloride limits under
sub. (5). The cited procedures and test methods are contained in Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
where:
Ei is the potential hydrogen chloride emission rate
Eo is the hydrogen chloride emission rate measured at the outlet of the acid gas control device
NR 440.215(9)(f)2.
2. Method 26 or 26A shall be used for determining the hydrogen chloride emission rate. The minimum sampling time for Method 26 or 26A shall be one hour.
NR 440.215(9)(f)3.
3. An owner or operator may request that compliance with the hydrogen chloride emissions limit be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(f)4.
4. The owner or operator of an affected facility shall conduct an initial compliance test for hydrogen chloride as required under
s. NR 440.08.
NR 440.215(9)(f)5.
5. Following the date of the initial compliance test or the date on which the initial compliance test is required under
s. NR 440.08, the owner or operator of an affected facility located within a large MWC plant shall conduct a performance test for hydrogen chloride on an annual basis and no more than 12 calendar months following the previous compliance test.
NR 440.215(9)(f)7.
7. Not operating a sorbent injection system for the sole purpose of testing in order to demonstrate compliance with the percent reduction standards for MWC acid gases is not considered a physical change in the method of operation under
ch. NR 405,
406 or
408.
NR 440.215(9)(g)
(g) The procedures and test methods in this paragraph shall be used to determine compliance with the nitrogen oxides limit under
sub. (6). The cited procedures and test methods are contained in Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(g)1.
1. Method 19, section 4.1, shall be used for determining the daily arithmetic average nitrogen oxides emission rate.
NR 440.215(9)(g)2.
2. An owner or operator may request that compliance with the nitrogen oxides emissions limit be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(g)3.
3. The owner or operator of an affected facility subject to the nitrogen oxides limit under
sub. (6) shall conduct an initial compliance test for nitrogen oxides as required under
s. NR 440.08. Compliance with the nitrogen oxides emission standard shall be determined by using a CEMS for measuring nitrogen oxides and calculating a 24-hour daily arithmetic average emission rate using Method 19, section 4.1, except as specified under
subd. 4.
NR 440.215(9)(g)4.
4. For batch MWCs or MWCs that do not operate continuously, compliance shall be determined using a daily arithmetic average of all hourly average values for the hours during the day that the affected facility is combusting MSW.
NR 440.215(9)(g)5.
5. The owner or operator of an affected facility subject to the nitrogen oxides emissions limit under
sub. (6) shall install, calibrate, maintain and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of the system.
NR 440.215(9)(g)6.
6. Following the initial compliance test or the date on which the initial compliance test is required to be completed under
s. NR 440.08, compliance with the emission limit for nitrogen oxides required under
sub. (6) shall be determined based on the arithmetic average of the arithmetic average hourly emission rates during each 24-hour daily period measured between 12:00 midnight and the following midnight using CEMS data.
NR 440.215(9)(g)7.
7. At a minimum, valid CEMS data shall be obtained for 75% of the hours per day for 75% of the days per month the affected facility is operated and combusting MSW.
NR 440.215(9)(g)8.
8. The 1-hour arithmetic averages required by
subd. 6. shall be expressed in parts per million volume dry basis and used to calculate the 24-hour daily arithmetic average emission rates. The 1-hour arithmetic averages shall be calculated using the data points required under
s. NR 440.13 (2). At least 2 data points shall be used to calculate each 1-hour arithmetic average.
NR 440.215(9)(g)9.
9. All valid CEMS data shall be used in calculating emission rates even if the minimum CEMS data requirements of
subd. 7. are not met.
NR 440.215(9)(g)11.
11. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 of Appendix F of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(g)12.
12. When nitrogen oxides emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks and zero and span adjustments, emission data calculations to determine compliance shall be made using other monitoring systems as approved by the department or Method 19 to provide, as necessary, valid emission data for a minimum of 75% of the hours per day for 75% of the days per month the unit is operated and combusting MSW.
NR 440.215(9)(h)
(h) The following procedures shall be used for determining compliance with the operating standards under
sub. (7):
NR 440.215(9)(h)1.
1. Compliance with the carbon monoxide emission limits in
sub. (7) (a) shall be determined using a 4-hour block arithmetic average for all types of affected facilities except mass burn rotary waterwall MWCs, RDF stokers and spreader stoker and RDF mixed fuel-fired combustors.
NR 440.215(9)(h)2.
2. For affected mass burn rotary waterwall MWCs, RDF stokers and spreader stoker and RDF mixed fuel-fired combustors, compliance with the carbon monoxide emission limits in
sub. (7) (a) shall be determined using a 24-hour daily arithmetic average.
NR 440.215(9)(h)3.
3. The owner or operator of an affected facility shall install, calibrate, maintain and operate a CEMS for measuring carbon monoxide at the combustor outlet and record the output of the system.
NR 440.215(9)(h)4.
4. The 4-hour and 24-hour daily arithmetic averages in
subds. 1. and
2. shall be calculated from 1-hour arithmetic averages expressed in parts per million by volume dry basis. The 1-hour arithmetic averages shall be calculated using the data points generated by the CEMS. At least 2 data points shall be used to calculate each 1-hour arithmetic average.
NR 440.215(9)(h)5.
5. An owner or operator may request that compliance with the carbon monoxide emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7% oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established during the initial compliance test.
NR 440.215(9)(h)6.
6. The following procedures shall be used to determine compliance with load level requirements under
sub. (7) (b):
NR 440.215(9)(h)6.a.
a. The owner or operator of an affected facility with steam generation capability shall install, calibrate, maintain and operate a steam flow meter or a feedwater flow meter, measure steam or feedwater flow in kilograms per hour or pounds per hour on a continuous basis, and record the output of the monitor. Steam or feedwater flow shall be calculated in 4-hour block arithmetic averages.
NR 440.215(9)(h)6.b.
b. The method contained in ASME Power Test Codes: Test Code for Steam Generating Units, PTC 4.1 (1964) section 4, incorporated by reference in
s. NR 440.17 (2) (h) 2., shall be used for calculating the steam or feedwater flow required under
subd. 6. a. The recommendations of Instruments and Apparatus: Measurement of Quantity of Materials, ASME Interim Supplement 19.5 (1971) chapter 4, incorporated by reference in
s. NR 440.17 (2) (h) 3., shall be followed for design, construction, installation, calibration and use of nozzles and orifices except as specified in
subd. 6. c.
NR 440.215(9)(h)6.c.
c. Measurement devices such as flow nozzles and orifices are not required to be recalibrated after they are installed.
NR 440.215(9)(h)6.d.
d. All signal conversion elements associated with steam or feedwater flow measurements shall be calibrated according to the manufacturer's instructions before each dioxin or furan compliance and performance test, and at least once per year.
NR 440.215(9)(h)7.
7. To determine compliance with the maximum particulate matter control device temperature requirements under
sub. (7) (c), the owner or operator of an affected facility shall install, calibrate, maintain and operate a device for measuring temperature of the flue gas stream at the inlet to the final particulate matter control device on a continuous basis and record the output of the device. Temperature shall be calculated in 4-hour block arithmetic averages.
NR 440.215(9)(h)8.
8. Maximum demonstrated MWC unit load shall be determined during the initial compliance test for dioxins/furans and each subsequent performance test during which compliance with the dioxin/furan emission limit under
sub. (4) is achieved. Maximum demonstrated MWC unit load shall be the maximum 4- hour arithmetic average load achieved during the most recent test during which compliance with the dioxin/furan limit was achieved.
NR 440.215(9)(h)9.
9. The maximum demonstrated particulate matter control device temperature shall be determined during the initial compliance test for dioxins/furans and each subsequent performance test during which compliance with the dioxin/furan emission limit under
sub. (4) is achieved. Maximum demonstrated particulate matter control device temperature shall be the maximum 4-hour arithmetic average temperature achieved at the final particulate matter control device inlet during the most recent test during which compliance with the dioxin/furan limit was achieved.
NR 440.215(9)(h)10.
10. At a minimum, valid CEMS data for carbon monoxide, steam or feedwater flow and particulate matter control device inlet temperature shall be obtained 75% of the hours per day for 75% of the days per month the affected facility is operated and combusting MSW.
NR 440.215(9)(h)11.
11. All valid data shall be used in calculating the parameters specified under this paragraph even if the minimum data requirements of
subd. 10. are not met.
NR 440.215(9)(h)12.
12. Quarterly accuracy determinations and daily calibration drift tests for carbon monoxide CEMS shall be performed in accordance with procedure 1 of Appendix F of
40 CFR part 60, incorporated by reference in
s. NR 440.17.
NR 440.215(9)(j)
(j) The following procedures shall be used for calculating MWC unit capacity as defined under
sub. (2):
NR 440.215(9)(j)1.
1. For MWC units capable of combusting MSW continuously for a 24-hour period, MWC unit capacity in megagrams per day or tons per day of MSW combusted shall be calculated based on 24 hours of operation at the maximum design charging rate. The design heating values under
subd. 4. shall be used in calculating the design charging rate.
NR 440.215(9)(j)2.
2. For batch MWC units, MWC unit capacity in megagrams per day or tons per day of MSW combusted shall be calculated as the maximum design amount of MSW that can be charged per batch multiplied by the maximum number of batches that could be processed in a 24-hour period. The maximum number of batches that could be processed in a 24-hour period is calculated as 24 hours divided by the design number of hours required to process one batch of MSW, and may include fractional batches. The design heating values under
subd. 4. shall be used in calculating the MWC unit capacity in megagrams per day or tons per day of MSW.
NR 440.215 Note
Note:
For example, if one batch requires 16 hours then 24/16 or 1.5 batches could be combusted in a 24-hour period.
NR 440.215(9)(j)4.
4. MWC unit capacity shall be calculated using a design heating value of 10,500 kilojoules per kilogram (4,500 Btu per pound) for all MSW.
NR 440.215(10)
(10) Reporting and recordkeeping requirements. The owner or operator of an affected facility located at an MWC plant with a capacity greater than 225 megagrams per day (250 tons per day) shall provide notification of intent to construct and of planned initial startup date and the type or types of fuels planned for combustion in the affected facility. The MWC unit capacity and MWC plant capacity and supporting capacity calculations shall be provided at the time of the notification of construction.
NR 440.215(10c)
(10c) Daily records. The owner or operator of an affected facility located within a small or large MWC plant and subject to the standards under
sub. (3),
(4),
(5),
(6) or
(7) shall maintain records of the following information for each affected facility for a period of at least 2 years:
NR 440.215(10c)(b)1.
1. The following measurements shall be recorded in computer readable format and on paper:
NR 440.215(10c)(b)1.b.
b. All 1-hour average sulfur dioxide emission rates at the inlet and outlet of the acid gas control device if compliance is based on a percent reduction or at the outlet only if compliance is based on the outlet emission limit as specified under
sub. (9) (e).
NR 440.215(10c)(b)1.d.
d. All 1-hour average carbon monoxide emission rates, MWC unit load measurements and particulate matter control device inlet temperatures as specified under
sub. (9) (h).
NR 440.215(10c)(b)2.a.
a. All 24-hour daily geometric average percent reductions in sulfur dioxide emissions and all 24-hour daily geometric average sulfur dioxide emission rates as specified under
sub. (9) (e).
NR 440.215(10c)(b)2.c.
c. All 4-hour block or 24-hour daily arithmetic average carbon monoxide emission rates, as applicable, as specified under
sub. (9) (h).
NR 440.215(10c)(b)2.d.
d. All 4-hour block arithmetic average MWC unit load levels and particulate matter control device inlet temperatures as specified under
sub. (9) (h).
NR 440.215(10c)(c)
(c) Identification of the operating days when any of the average emission rates, percent reductions or operating parameters specified under
par. (b) 2. or the opacity level exceeded the applicable limits with reasons for such exceedances as well as a description of corrective actions taken.